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The Galton Board with Pascal’s triangle is a 12” by 9” 
(310mm by 218mm) probability demonstrator providing 
a visualization of math in motion and the powers of the 
probabilities and statistics. With the addition of the Stock 
Market Clip-ons, the board illustrates the randomness 
and the probabilities of various market returns.

The Galton Board displays centuries old 
mathematical concepts in an innovative, 
dynamic desktop device. It incorporates 
Sir Francis Galton’s (1822-1911) invention 
from 1873 that illustrated the binomial 
distribution, which for a large number 
of rows of hexagons and a large number 
of beads approximates the normal 
distribution, a concept known as the 

Central Limit Theorem. He was fascinated with the order 
of the bell curve that emerges from the 
apparent chaos of beads bouncing off of 
pegs in his board. According to the Central 
Limit Theorem, more specifically, the de 
Moivre (1667-1754) – Laplace (1749-1827) 
theorem, the normal distribution may be 
used as an approximation to the binomial 
distribution under certain conditions.

When rotated on its axis, the 6,000 steel 
beads and one large golden bead cascade 
through 14 rows of symmetrically placed 
hexagons in the Galton Board.  When the 
device is level, beads bounce off of the 
105 hexagons with equal probability of 
moving to the left or right. As the beads settle into one of 
the 15 bins at the bottom of the board, they accumulate 
to create a bell-shaped histogram (binomial distribution).

Printed on the lower part of the board is the normal 
distribution or bell curve, as well as the average and 
standard deviation lines relative to that distribution. The 
bell curve, also known as the Gaussian distribution (Carl 
Friedrich Gauss, 1777-1855), is important in statistics 
and probability theory. It is used in the natural and social 
sciences to represent random variables, like the beads 
in the Galton Board. You can also see the Y-axis and 
X-axis descriptions, and numbered bins with expected 
percentages and numbers of beads.  

Introduction
Printed on the top of the board are formulas for the normal 
distribution, standard deviation and binomial expansions.  

Overlaid on the hexagons is Pascal’s 
triangle (Blaise Pascal, 1623-1662), which 
is a triangle of numbers that follows the 
rule of adding the two numbers above 
to get the number below. The number at 
each hexagon represents the number of 
different paths a bead could travel from 
the top hexagon to that hexagon. It also 
shows the Fibonacci numbers (Leonardo 

Fibonacci, 1175-1250), which are the sums of specific 
diagonals in Pascal’s triangle. Within Pascal’s triangle, 
mathematical properties and patterns are numerous. 
Those include: natural numbers, row totals, powers of 11, 
powers of 2, figurate numbers, Star of David theorem, and 
the hockey stick pattern. Other patterns in Pascal’s triangle 
not identified on this board include prime numbers; square 
numbers; binary numbers; Catalan numbers; binomial 
expansion; fractals; golden ratio; and the Sierpinski triangle.

Among the 6,000 steel beads, there is one golden bead, 
which demonstrates a single random outcome. Shown 
on top of each bin is the percentage estimates of the 
probability from Pascal’s triangle that a bead will land 
in that bin.  By following the golden bead, you can 
clearly observe those probabilities with each flip of the 
Galton Board. When a Stock Market Clip-on is in place, 
the golden bead can represent the likely range and 
probabilities of next month’s stock market return. The 
Galton Board’s probabilities as to which bin the golden 
bead will land in is a substitute for the  prediction of 
stock market forecasters. 

Embedded in this Galton Board are many statistical and 
mathematical concepts including probability theories, 
independent identically distributed (iid) random variables, 
the normal or bell-shaped curve, the Central Limit 
Theorem (the de Moivre-Laplace theorem), the binomial 
distribution, Bernoulli (1655-1705) trials, regression to the 
mean, the law of large numbers, probabilities such as coin 
flipping and stock market returns, the random walk, the 
Gambler’s Fallacy, the law of frequency of errors and what 
Sir Francis Galton referred to as the “law of unreason.”

Galton’s original
drawing

Sir Francis Galton

Blaise Pascal
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In his book Natural Inheritance (1889), Sir Francis Galton 
colorfully described the apparatus he created to reveal 
the order in apparent chaos. The following is a modified 
excerpt from that 135 year-old book. The text has been 
slightly updated to correspond to the terminology used to 
describe our Galton board.

The Charms of Statistics

“It is difficult to understand why statisticians commonly 
limit their inquires to Averages, and do not revel in more 
comprehensive views. Their souls seem as dull to the charm 
of  variety as that of  the native of  one of  our flat English 
counties, whose retrospect of  Switzerland was that, if  its 
mountains could be thrown into its lakes, two nuisances 
would be got rid of  at once. An Average is but a solitary fact, 
whereas if  a single other fact be added to it, an entire Normal 
Scheme, which nearly corresponds to the observed one, starts 
potentially into existence.”

“Some people hate the very name of  statistics, but I find 
them full of  beauty and interest. Whenever they are not 
brutalized, but delicately handled by the higher methods, 
and are warily interpreted, their power of  dealing with 
complicated phenomena is extraordinary. They are the 
only tools by which an opening can be cut through the 
formidable thicket of  difficulties that bars the path of  
those who pursue the Science of  man.”

Mechanical Illustration of the Cause of 
the Curve of Frequency

“The Curve of  Frequency, and that of  
Distribution, are convertible: therefore, 
if  the genesis of  either of  them can be 
made clear, that of  the other becomes 
also intelligible. I shall now illustrate the 
origin of  the Curve of  Frequency, by 
means of  an apparatus (shown here) that 
mimics in a very pretty way the conditions 
on which Deviation depends.” 

Our design of  the Galton board is constructed of  an anti-
static plastic frame. A bead reservoir is designed into the 
top of  the board. Below the outlet of  the funnel stands a 
succession of  14 rows of  hexagons, similar to Galton’s pegs, 
stuck squarely into the back of  the board, and below these 
again are a series of  15 bins, or vertical compartments. A 
charge of  6,000 steel beads is enclosed in the board. When the 
board is flipped “topsy-turvy,” all the beads run to the upper 
end into the reservoir; then, when it is turned back into its 
working position, the desired action commences. The borders 

of  the reservoir have the effect of  directing all the beads that 
had collected at the upper end of  the frame to run into the 
mouth of  the funnel.

“The beads pass through the funnel and scamper deviously 
down through the pegs [hexagons] in a curious and interesting 
way; each of  them darting a step to the right or left, as the 
case may be, every time it strikes a peg. The pegs are disposed 
in a quincunx fashion, so that every descending bead strikes 
against a peg in each successive row. The cascade issuing from 
the funnel broadens as it descends, and, at length every bead 
finds itself  caught in a bin immediately after freeing itself  
from the last row of  pegs. The outline of  the distribution of  
beads that accumulate in the bins approximates to the Curve 
of  Frequency, and is closely of  the same shape however often 
the experiment is repeated.”

“The principle on which the action of  the apparatus 
depends is, that a number of  small and independent 
accidents befall each bead in its career. In rare cases, a long 
run of  luck continues to favor the course of  a particular 
bead towards either outside bin, but in the large majority 
of  instances the number of  accidents that cause Deviation 
to the right, balance in a greater or less degree those that 
cause Deviation to the left. Therefore most of  the beads 
find their way into the bins that are situated near to a 
perpendicular line drawn from the outlet of  the funnel, 
and the Frequency with which beads stray to different 
distances to the right or left of  that line diminishes in a 
much faster ratio than those distances increase.”

Order in Apparent Chaos

“I know of  scarcely anything so apt to impress the imagination 
as the wonderful form of  cosmic order expressed by the 
‘Law of  Frequency of  Error.’ The law would have been 
personified by the Greeks and deified, if  they had known 
of  it. It reigns with serenity and in complete self-effacement 
amidst the wildest confusion. The huger the mob, and the 
greater the apparent anarchy, the more perfect is its sway. It 
is the supreme law of  Unreason. Whenever a large sample 
of  chaotic elements are taken in hand and marshaled in the 
order of  their magnitude, an unsuspected and most beautiful 
form of  regularity proves to have been latent all along. The 
tops of  the marshaled bins form a flowing curve of  invariable 
proportions; and each element, as it is sorted into place, finds, 
as it were, a pre-ordained niche, accurately adapted to fit it. If  
the measurement at any two specified Grades in the bin are 
known, those that will be found at every other Grade, except 
towards the extreme ends, can be predicted in the way already 
explained, and with much precision.”

In Galton’s Words

Galton’s original 
board
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1  Pascal’s Triangle
Pascal’s triangle is a triangle of numbers 
that follow the rule of adding the two 
numbers above to get the number below. 
This pattern can continue endlessly. 
Blaise Pascal used the triangle to 
study probability theory, as described 
in his mathematical treatise Traité du triangle arithmétique 
(1665). Other mathematicians studied it centuries before 
him in Persia, India, China, Germany, and Italy. The triangle’s 
patterns translate to mathematical properties of the binomial 
coefficients. When placed on the Galton Board, each number 
on a hexagon represents the number of paths a bead can take 
to reach that hexagon.

2  Normal Distribution Formula
In probability theory, a normal distribution is a type of 
continuous probability distribution for a real-valued random 
variable. Shown here is the general form of its probability 
density function f(x). Normal distributions are important in 
statistics and are often used in the natural and social sciences to 
represent real-valued random variables whose distributions are 
not known. Included in the formula is the constant pi (π ≈ 3.142), 
which is the ratio of a circle’s circumference to its diameter. Also 
included is Euler’s number (e ≈ 2.718), which is the base of the 
natural logarithm. The iid central limit theorem states that the 
random variable x will be normally distributed as the sample 
size becomes large and sigma (σ) is finite.

ef(x)

3  Standard Deviation Formulas
A standard deviation is a measure of how dispersed the data 
is in relation to the average (mean). To calculate the standard 

deviation of a sample data set of size n, follow these steps:
1. Calculate the mean of your data set ( ), which 
is the estimate of μ in the normal distribution formula.  
2. Subtract the mean from each of the sample data values (xi) 
and list the differences. xi ’s are the n samples of x in the 
normal distribution formula.
3. Square each of the differences ( ) from the previous 
step and make a list of the squares.
4.  Add the squares together.
5. Subtract one from the number of data values (n) you 
started with.
6. Divide the sum from step four by the number from step five.
7. Take the square root of the number from the previous step. 

This is the standard deviation of the sample (sx), which is the 

estimate of σ for the population of size N.

4  Binomial Theorem
The binomial theorem describes the algebraic expansion of 
powers of a binomial. Pascal’s triangle defines the coefficients 
that appear in binomial expansions. That means the nth row of 
Pascal’s triangle comprises the coefficients of the expanded 

expression of the polynomial (a + b)n. For the Galton board, 

the binomials are left and right (L + R)n.

(a+b)2 = 1a2 + 2ab + 1b2

(L+R)3 = 1L3 +3L2R + 3LR2 + 1R3

The expansion of (a + b)n is (a + b)n = x0a
n + x1a

n-

1b + x2a
n-2b2 + … + xn-1abn-1 + xnb

n where the 

coefficients of the form xk are precisely the numbers that 

appear in the kth entry of the nth row of Pascal’s triangle (k 
and n counting starts at 0). This can be expressed as:  
, i.e., “n choose k.” The first hexagon on the Galton board is 

, followed below by  and .

Examples of binomial expressions are shown on the board for 

(a + b)n for n = 2 and (L + R)n for n = 3. 

5  Fibonacci Numbers and 
the Golden Ratio

The sum of the numbers on the diagonal shown on Pascal’s 
triangle match the Fibonacci numbers. The sequence progresses 
in this order: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and so on. Each 
number in the sequence is the sum of the previous two numbers. 
For example: 2+3=5; 3+5=8; 5+8=13; 8+13=21.... Leonardo 
Fibonacci popularized these numbers in his book Liber Abaci 
(1202). As you progress through the Fibonacci numbers, the 
ratios of consecutive Fibonacci numbers approach the golden 
ratio (φ) of 1.61803398... but never equal it. For example: 
55/34=1.618; 89/55=1.618; and 144/89=1.618. The rectangular 
dimensions of this Galton board (173mm x 280mm) approach 
the golden ratio of 1.618. The golden ratio was first defined by 
Euclid in his book Elements, written in 300 B.C. Leonardo Da 

Items of Interest on the Galton Board

N

N

Standard Deviation of 
a Sample

Standard Deviation of 
the Population
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Vinci used the ratio to construct his masterpieces. The equation 
for the golden ratio is: 

φ

6  Row Numbers and Power of 11
On the left side, the fourteen rows of the Pascal’s triangle 
are numbered, with the first row designated as n=0 and first 
entry in each row designated as k=0. Fourteen rows are large 
enough so the resulting binomial distribution is a good discrete 
approximation to the continuous normal distribution.
If you collapse each row into a single number by taking each 
element as a digit (and carry over to the left if the element 
has more than one digit), you get the power of eleven: 1, 11, 
121, 1331, 14641... which matches to the numbers in the 
Pascal’s triangle of that row. 

7  Row Totals and Power of 2
The sum of numbers in a row is equal to 2n where n equals the 
row number. For example, at row three, summing up the Pascal’s 
numbers, 1 + 3 + 3 + 1 = 8, which also equals to 23.
The sum of the numbers in each row is also shown next to the 
power of two, and each total doubles on subsequent rows. In 
addition, the total of the squares of the entries of a row equals the 
middle entry of that row number times two. For example, if you 
sum the squares of the entries in row four (12 + 42 + 62 + 42 + 12), 
that equals seventy, which is also the middle entry of row eight.

8  Star of David Theorem
The Star of David theorem says the two sets of three numbers 
surrounding a number have equal products. In the example 
shown, the number 5 is surrounded by, in sequence, the 
numbers 1, 4, 10, 15, 6, 1, and taking alternating numbers, we 
have 1×10×6 = 4×15×1 = 60.

9  Diagonals and Triangular Numbers
The diagonals contain the figurate numbers of simplices, with 
the left and right edges containing only 1’s. The subsequent 
diagonals contain natural or counting numbers, then triangular 
numbers (number of dots in an equilateral triangular 
arrangement), then tetrahedral numbers (triangular pyramidal 
numbers), then pentatope numbers followed by the 5, 6, and 7 
simplex numbers.  The square of each natural number is equal 
to the sum of a pair of adjacent entries on the third diagonal 
(Triangular Numbers).  Example: 72 = 49 = 21 + 28

10  Quincunx Pattern
The hexagons on the board are in a Quincunx pattern, 
which is an arrangement of five objects with four at the 
corners of a square or rectangle and the fifth at its center.

11  Hockey Stick Pattern
The sum of the numbers in a diagonal, starting from the edge 
with 1, is equal to the number in the next diagonal below. 
Outlining these numbers reveals a hockey stick pattern, as seen 
here in 1 + 10 + 55 = 66.

12  Bin Numbers, Expected Percentages,
and Beads

The 15 bead bins are numbered from 0 to 14 so the location 
of the golden bead can be easily identified and recorded. Also, 
the probabilities from Pascal’s triangle of a random outcome 
occurring within a certain bin can be identified by imagining a 
15th row of the triangle (n=14). 
Expected percentages of outcomes per bin for both beads and 
stock market returns are shown just below the bin number, with 
20.9 percent expected in middle bin (#7). Then, the expected 
number of beads per bin are shown based on 6,000 beads.

13  Bell Curve
The normal distribution, often referred to as the “bell curve,” is 
the most widely known and used of all probability distributions. 
Because the normal distribution approximates many natural 
phenomena so well, it has developed into a standard of 
reference for numerous probability problems. Several sets 
of data follow the normal distribution, such as the heights of 
adults, the weights of babies, classroom test scores, large 
samples of monthly returns of the stock market indexes, and 
the beads in the Galton board. 

14  Probability Density
The probability density f(x) is the relationship between 
observations and their probability. It defines the probability 
of the occurrence of a random variable occurring within a 
particular range of continuous random variables. One important 
probability density function is that of a Gaussian, or normal, 
random variable, which looks like a bell-shaped curve. These 
f(x) values assume a normal distribution with a sigma (σ) of 1.

15  Number of Beads 
The right Y-axis provides an estimate of the number of the 
beads in each bin. 

16  Binomial Distribution of Steel Beads
Each steel bead represents an independent identically distributed 
(iid) random variable that falls from the reservoir through a fixed 
pattern of hexagons. A binomial distribution is created by the 
6000 beads from the 14 Bernoulli trials for each bead, one trial 
for each hexagon hit. The discrete binomial distribution of beads 
closely approximates the continuous normal distribution.
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17  Golden Bead
Among the 6,000 1mm steel beads is a 2.2mm golden bead. 
This bead demonstrates a single random outcome.

18  Standard Deviation Lines
The standard deviation (σ) is a measure of how closely all of 
the data points are gathered around the mean (μ). The shape 
of a normal distribution is determined by the mean and the 
standard deviation. About 68 percent of the data in a normal 
distribution falls within one standard deviation of the mean. 
About 95 percent falls within two standard deviations, about 
99.7 percent falls within three standard deviations, and about 
99.99 percent falls within four standard deviations. With 14 
rows of hexagons in Pascal’s triangle, there are 14 hexagons in 
the bottom row of the triangle. There are 15 bins, with bins on 
each end and between each hexagon. These 15 bins represent a 
total of 2x15/   14 = 8.0 distribution standard deviations ( μ±4σ). 
Each bin equals 0.533 standard deviations and each standard 
deviation equals 1.875 bins (8/15 = 0.533 or 15/8 = 1.875).

19  Galton Degrees and  
Interquartile Range

There are several ways to “divvy up” a distribution of data. In 
addition to the standard deviation (std dev), Sir Francis Galton 
suggested a degree scale for the x-axis, as shown by the small 
circles that represent and resemble degree symbols on the x-axis 
on our board. The Galton degrees are based on the statistical 
definition of the probable error, where each degree equals 
0.6745 std devs for a normal distribution. The probable error 
defines the half-range of an interval around the central point of a 
distribution, such that half of the values will lie within the interval 
and half will lie outside. That interval of plus or minus 1 degree 
around 0 (the mean) in a normal distribution is 1.35 std devs wide 
and contains the middle 50%. Remember that 2 std devs contains 
the middle 68.3% of the normal distribution.

Below is Galton’s original drawing of his degrees from 1877.

Another method to divvy up the distribution is the Interquartile 
Range (IQR), which measures dispersion of the data by dividing 
the distribution into quartiles or 25% increments using the 
median of the data instead of the mean. The IQR is defined as 
the difference between the 75th (Q3) and 25th (Q1) percentiles 

of the data. It is used in many statistical applications to locate 
where the middle 50% of the data exists without being impacted 
by outliers, which are data beyond IQR-related upper and lower 
bounds. The IQR is widely used in the financial industry to 
analyze the spread of data related to financial metrics, such as 
stock prices, exchange rates, and economic indicators.
 
The table below summarizes the different methods discussed 
above.

Galton
Degrees (°) -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 12

Normal 
Distribution (σ) 4.0 3.4 2.7 2.0 1.3 0.7 0 0.7 1.3 2.0 2.7 3.4 4.0 8.0

Outcomes b/w
Ranges (%) 0.0 0.3 1.8 6.7 16.1 25.0 0 25.0 16.1 6.7 1.8 0.3 0.0 100

# of Beads
Expected 2 19 108 403 968 1500 0 1500 968 403 108 19 2 6000

Interquartile Range Q1 Q2 Q3

TOTAL

Since there are 15 bead bins and 12 Galton degree bins in this 
Galton Board, each degree bin equals 1.25 bead bins.

The three diagrams below show the bell curve divided up by 
standard deviation, Galton Degrees and Interquartile Range. 

50%
24.65%

68.25%15.87% 15.87%

24.65%

-1σ 0σ 1σ-2σ-3σ-4σ 2σ 3σ 4σ

1° 2°0° 3° 4° 5° 6°-6° -5° -4° -3° -2° -1°

Q1 Q3
Q1-1.5xIQR Q3+1.5xIQR

Median

-0.6745σ 0.6745σ-2.698σ 2.698σ

Galton Degrees (°)

Standard Deviation (σ)

Outcomes (%)

Interquartile Range (Quartiles)
IQR

-1σ 0σ 1σ-2σ-3σ-4σ 2σ 3σ 4σ

20  X-axis: Standard Deviations
The X-axis label provides information grouped by standard 
deviation. Labeled under each standard deviation line is its 
number of standard deviations from the mean up to 4 std 
devs (μ ± 4σ). Between each std dev line is the percentage of 
outcome that would be expected for that area of the bell curve. 
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18816511055205 165 110 55 20 5
2.2% 4.6% 9.4% 11.8% 14.2%  >19%< -17% -12.2% -9.8% -7.4% -5.0% -2.6% -0.2% 7.0%-14.6% 16.6%

100% Stocks
= 1.0% = 4.5% = 900 mo.

Theoretical Investment Portfolio

1.0%

5.5% 10.0% 14.5% 19.0%-17.0% -12.5% -8.0% -3.5% 307 122 19 1307122191 1.0%

μ

Uncertainty
Fair Price

Good News

Bad News

Sellers

Buyers
pj,t

t E(Rj )
~

f(Rj)

Rj

The Hebner Model

Rj

f(Rj)

7
8

5

1

46

9

Bin Divider, Expected Percentages and Returns

The Hebner Model

The Random
Walk Model

Investment
Return Formula

Fama/French
Factor Models Theoretical Distribution 

of Monthly Returns

Bottom Axis

Theoretical
Investment

Portfolio

Cost of Capital

3

2

Items of Interest on the Stock Market Clip-Ons

50% Stocks / 50% Bonds
= 0.7% = 2.4% = 900 mo.

Theoretical Investment Portfolio

18816511055205 165 110 55 20 5
1.3% 2.6% 5.2% 6.5% 7.7%  >10%< -9% -6.3% -5.1% -3.8% -2.5% -1.2% 0.0% 3.9%-7.6% 9.0%

0.7%
μ

3.1% 5.5% 7.9% 10.3%-8.9% -6.5% -4.1% -1.7% 307 122 19 1307122191 0.7%

Uncertainty
Fair Price

Good News

Bad News

Sellers

Buyers
pj,t

t E(Rj )
~

f(Rj)

Rj

The Hebner Model

Rj

f(Rj)

To apply a Clip-on, snap it onto the bottom portion of the main board. Use the bottom edge as a guide.  
To take off or switch the Clip-on, gently pry off the two sides of the Clip-on. 
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1  Bin Dividers with Expected
Percentages and Returns

The four standard deviation range of expected monthly returns 
is shown on the top of bin dividers based on 900 monthly 
returns for the theoretical investment portfolio.  The range 
changes according the standard deviation of the allocation of 
the investment portfolio. The bin dividers are scaled in such a 
way that the boundary of the board corresponds to the four 
standard deviations of returns (≈99.99 percent of outcomes 
or μ ± 4σ), with about two monthly returns expected in each 
tail beyond four standard deviations. The second row are 
estimates of the number of monthly returns expected per bin 
based on 900 monthly returns. 

2  Investment Portfolio Illustrations
To represent market returns, we selected two theoretical 
investment portfolios, one aggressive and one moderate.  
The red Clip-on illustrates a 100% stock portfolio 
(aggressive), which we assume to have a monthly average 
return of 1.0% and a standard deviation of 4.5%, with a 
sample size of 900 months.  With four standard deviations, 
this results in a range of returns from -17% to 19%.  This 
means with 15 bins, the return range per bin is 2.4%, with 
the mean of 1.0% right in the center.
The green Clip-on illustrates a theoretical 50% stock / 50% 
bond portfolio (moderate), which we assume to have a 
monthly average return of 0.7% and a standard deviation 
of 2.5%, with a sample size of 900 months.  In keeping with 
the 15 bins, the range is now a tighter band of -9.3% to 
10.7%, a return range of 1.33% per bin and with 0.7% mean 
in the center.  

3  The Random Walk Model
The efficient market hypothesis states that the current price ( pj,t) 
of a security ( j ) fully reflects available information ( t), which 
implies “...that the successive price changes or, more usually, 
successive one-period returns, are independent. In addition, 
it assumes that successive changes, or returns, are identically 
distributed. Together, the two hypotheses constitute the random 
walk model. Formally, the model says that

 f(Rj,t+1 | t) = f(Rj), 

which is the usual statement that the conditional and marginal 
probability distributions of an independent random variable 
are identical. In addition, the density function ( f ) must be the 
same for all time ( t ).” If we assume that the expected return on 
a security is constant over time, we have

E(~Rj,t+1 | t) = E(~Rj).

Source: The Theory of  Finance, Eugene F. Fama & Merton H. Miller, 1972, pg. 339

4  The Hebner Model 
The teeter-totters below illustrate Eugene Fama’s efficient 
market hypothesis, which states that prices of securities ( j ) 
fully reflect all available information resulting in fair prices. 
The left side of the teeter-totter represents whatever set of 
information ( t ) is assumed to be fully reflected in the price 
at that time ( t ) and the right side represents the prices ( pj,t ) 
that millions of willing buyers and sellers have concluded are 
fair prices given the set of information at that time. The efficient 
market hypothesis asserts that, in a well-organized, reasonably 
transparent market, the market price ( pt ) is generally equal to 
or close to the fair value, as investors react quickly to incorporate 
new information ( t ) about relative scarcity, utility, or potential 
returns in their exchange of cash for securities. 
The three components of the model occurred to Mark Hebner 
during the Global Financial Crisis of 2008. It starts with the 
teeter-totter placed at the top of the Pascal’s triangle. Then, 
the beads bouncing around and through an array of hexagons 
represents the randomness of monthly stock market returns 
(Rj,t+1). Thirdly, the beads land in the bins representing the 
realized returns (Rj), which, in large samples, resemble the bell 
curve ( f(Rj) ).
There is a random and continuous flow of good news and 
forecasts and bad news and forecasts, which, at any point in 
time, represents the uncertainty of the expected return of an 
investment (E(~Rj)) that is held at a constant level of risk. If 
uncertainty increases due to bad news, the price must make 
a proportional decrease so that the expected return remains 
essentially constant.

Good News

Bad News

Sellers

Buyers

Uncertainty

Fair Pricepj,t

t
E(Rj )

~

f(Rj)

Rj

If uncertainty decreases due to good news, the price must make 
a proportional increase so that the expected return remains 
essentially constant. 

Uncertainty

Fair Price
Good News

Bad News

Sellers

Buyers

pj,t

t

E(Rj )~

f(Rj)

Rj

This model is known as the Hebner model and should be 
thought of as a framework for incorporating the Galton board 
and Pascal’s triangle into how markets work. 
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5  Cost of Capital
In economics and accounting, the cost of capital is the cost of a 
company’s funds (both debt and equity), or, from an investor’s 
point of view, the required rate of return on a company’s 
existing securities. It is also used to evaluate new projects of 
a company. It is the minimum return that investors expect for 
providing capital to the company, thus setting a benchmark that 
a new project has to meet.

WACC = (E/V * Ke) + (D/V * Kd)

E is the market value of the firm’s equity.
V is the total market value of equity and debt, or E+D.
Ke is the cost of equity.
D is the market value of the firm’s debt.
Kd is the cost of debt.
WACC is the weighted average cost of capital.
Just as a reminder, the expected return of the buyer is also 

the cost of capital for the seller ( E(~Rj,t) = WACC ).

6  Investment Return Formula
The formula for an investment’s realized return/loss (R) is the 
change in price (Pt+1 - Pt), plus any dividends or cash paid to the 
investor during the period (D), divided by the original price (Pt) 
of the investment.

	

7  Fama/French Factor Models

Fama/French Five-Factor Model for Equities
The Fama/French five-factor model for equities is an asset 
pricing model directed at capturing the market, size, value, 
profitability, and investment patterns in average stock returns. It 
was developed in 2014 by Nobel laureate Eugene Fama and his 
co-author and colleague, Kenneth French. The model explains 
between 71 percent and 94 percent of the cross-section variance 
of expected returns for diversified portfolios of five factors in 
equities. It expands on the CAPM (1964) and the Fama/French 
three-factor model (1993). The Fama/French five-factor model 
equation is a time series regression of a series of research indexes 
created by Fama and French that include long-term historical stock 
prices of various company characteristics. The coefficient for each 
factor (independent variables) indicates the exposure or tilt to that 
factor in the portfolio. If the exposure to the five factors, market 
(bi), size (si), value (hi), profitability (ri), and investment (ci), capture 
all variation in expected returns, the alpha intercept (ai) in the 
following equation is zero for all securities and portfolios (i). 

Rit – RFt = ai + bi(RMt-RFt) + siSMBt + hiHMLt + riRMWt 
+ ciCMAt + eit

Rit is the return on the portfolio i for period t (dependent variable).
RFt is the risk-free return.
RMt-RFt is the return spread between the capitalization-weighted 
stock market and cash.
SMBt is the return on a diversified portfolio of small stocks minus 
the return on a diversified portfolio of big stocks (i.e., the size effect).
HMLt is the difference between the return on diversified portfolios 
of high and low BtM stocks (i.e., the value effect).
RMWt is the difference between the returns on diversified 
portfolios of stocks with robust and weak profitability.
CMAt is the difference between the returns on diversified 
portfolios of stocks of low and high investment firms, which 
Fama/French called conservative and aggressive.
eit is the error term and is a zero-mean residual.

Fama/French Two-Factor Model for 
Fixed Income
The Fama/French two-factor model for fixed income aims to 
explain average returns on bond portfolios. The model utilizes 
the term (TERMt) and default (DEFt) risk factors. TERMt 
is LTG-RF, where LTG is the monthly percent long-term 
government bond return and RF is the one-month treasury bill 
rate observed at the beginning of the month. DEF is CB-LTG, 
where CB is the return on a proxy for the market portfolio of 
corporate bonds. Finally, eit is the error term and is a zero-mean 
residual. Here is the equation:

Rit - RFt = ai + miTERMt + diDEFt + eit

8  Estimated Distribution of 
Monthly Returns

The red or green bars printed on the Clip-ons over the 
bell curve represent a histogram of the distribution of 900 
monthly returns of a theoretical investment portfolio. The 
bars look similar because the returns scale has been altered 
to fit the portfolio and the boundary limits of the board. 

9  Bottom Axis
The bottom axis shows percentage expected return at each 

standard deviation. Shown between each standard deviation 
line are the expected number of monthly returns based on 
900 months.
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1

11

1331

11 2

1441 6

110101 55

16156 151 20

17353571 2121

1285656281 88 70

19361261263691 8484

110120210210120101 25245 45

1126649579279249512 661 220924220

11328671517161716715286131 78 1287 781287

155165462462165551 11 330 330 11

114364100430033432200210019114 364 3003 9120021

6000

3000 3000

1500 3000 1500

750 2250 2250 750

375 1500 2250 1500 375

188 938 1875 1875 938 188

94 563 1406 1875 1406 563 94

47 328 984 1641 1641 984 328 47

23 188 656 1313 1641 1313 656 188 23

12 105 422 984 1477 1477 984 422 105 12

6 59 264 703 1230 1477 1230 703 264 59 6

3 32 161 483 967 1354 1354 967 483 161 32 3

1 18 97 322 725 1160 1354 1160 725 322 97 18 1

1 10 57 209 524 943 1257 1257 943 524 209 57 10 1

5 33 133 367 733 1100 1257 1100 733 367 133 33 51 1
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ROW 
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For a level Galton Board, there is an equal chance the beads 
will go either left or right at the top of each hexagon. This is 
an example of a Bernoulli trial. This illustration shows the 
expected number of beads that will travel through between  
each hexagon. There are approximately 6,000 beads in the 
bead reservoir. At the first hexagon, which is considered 
row 0, 3,000 beads are expected to go left and 3,000 beads 
expected to go right. If you follow the splitting of the beads 
each time you can see how many beads are expected to land 
in each bin after row 13.  The number on all of the hexagons 
of Pascal’s triangle can be interpreted as the number of 

Symmetric Binomial Distribution of Beads
paths to get to the kth location of row n. For example, for 
row 4, the numbers on the hexagons are 1, 4, 6, 4, 1 . If we 
add those numbers, we get a total of 16 paths to arrive at 
all 5 of hexagons in row 4. This also is 2 to the power of the 
row number (24 = 16). To determine the number of beads to 
arrive at the top of the middle hexagon of row 4 (k = 2: see 
golden bead), you would divide the number on that hexagon 
by the total of all the numbers on the hexagons in that row.  
So, 6/16 = 0.375 or 37.5%. Take that percentage times the 
total number of beads (6,000) and you get 2,250, as shown by 
the blue number above the middle hexagon in row 4.

6000

50% 50%

30003000

Row 14 (in gray) of Pascal’s triangle can be used to determine 
the probabilities (a symmetric binomial distribution) for a bead 
to fall into each of the 15 bins at the bottom of Galton board. 
Following the calculation for n=4 above, the expected percentage 

in the center bin (k = 7) of row 14 would be 3,432/16,384 = 20.9%.  
With 6,000 beads, that would mean 1,257 beads are expected 
to fall into that bin. If there were 16,384 beads, the numbers 
on each hexagon in row 14 would equal the beads expected to 
land in each bin. 
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n

1

1b1a

1b33ab23a2b1a3

1b21a2 2ab

1b44ab34a3b1a4 6a2b2

1b510a2b310a3b21a5 5ab45a4b

1b66ab515a2b46a5b 15a4b21a6 20a3b3

1b77ab635a3b435a4b37a6b1a7 21a2b521a5b2

1b828a2b656a3b556a5b328a6b21a8 8ab78a7b 70a4b4

1b99ab836a2b7126a4b5126a5b436a7b29a8b1a9 84a3b684a6b3

1b1010ab9120a3b7210a4b6210a6b4120a7b310a9b1a10 252a5b545a8b2 45a2b8

1b1212ab1166a2b10495a4b8792a5b7792a7b5495a8b412a11b 66a10b21a12 220a3b9924a6b6220a9b3

1b1313ab12286a3b10715a4b91716a6b71716a7b6715a9b4286a10b313a12b1a13 78a11b2 1287a8b5 78a2b111287a5b8

1b1155a2b8165a3b8462a5b6462a6b5165a8b355a9b21a11 11a10b 330a7b4 330a4b7 11ab10

(a+b)0 =

(a+b)1 = 

(a+b)2 = 

(a+b)3 =

(a+b)4 = 

(a+b)5 = 

(a+b)6 =

(a+b)7 = 

(a+b)8 = 

(a+b)9 =

(a+b)10 = 

(a+b)11 = 

(a+b)12 =

(a+b)13 = 

0 1 2 3 4 5 6 7 8 9 10 11 12 13k

The numbers in Pascal’s triangle are the binomial coefficients 
of a binomial expansion,  which is the algebraic expansion 
of a binomial raised to a power of n, for example (a+b)n. 
For example, (a+b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4 where 
1, 4, 6, 4, 1 are the binomial coefficients shown in Pascal’s 
triangle row 4. The general binomial formula for an arbitrary 
nonnegative integer n is given by

Binomial Coefficients, Expansion, and Distribution
where 

n
k( ) are the binomial coefficients defined on the next 

page. The expected bead distribution for a level Galton Board 
is a symmetric binomial distribution defined by the normed 
binomial coefficients  n

k( ) /2n.

Since this Galton Board has 14 rows of hexagons, the normal 
distribution can be used to approximate the binomial 
distribution (the de Moivre-Laplace theorem). n

k(  )
k=0

n
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kn choose k

The numbers in Pascal’s triangle can also be used in 
combinatorics, which is the study of combinations and 
permutations. The figure shows n is Pascal’s triangle row 
number and k (k = 0 to n) is the element location in row n. The 
number of different combinations C of n things taken k at a 
time (n choose k) is given by

Combinatorics
For example, if k is defined as the number of moves to the right 
that a bead makes after n hexagon interactions, how many 
ways can k right moves occur from n hexagon interactions?

The answer for n choose k  is given by n
k( ) . If n = 4, then the 

4 choose k results in Pascal’s triangle row 4 are 1, 4, 6, 4, 1 for 
k‘s from 0 to 4. There is only one path that a bead can take 
for k = 0 or 4 and four paths for both k = 1 or 3. There are six 
paths for k = 2 (see golden bead location). Pascal’s triangle 
figure below shows the n choose k values. 

(  ) k!(n-k)!= _____n!n
kC(n,k) Cn

k nCk ===
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The Sierpinski triangle is a very interesting mathematical 
structure that is a fractal (a mathematical curve whose 
shape retains the same general pattern of irregularity, 
regardless of how high it is magnified), with the overall 
shape of an equilateral triangle formed by starting with an 
equilateral triangle and recursively (a rule that is repeated) 
subdividing the triangle into smaller equilateral triangles. 
To create this pattern, start with an equilateral triangle, 
then identify the midpoints of its sides and connect 
them to form four congruent triangles inside the original 
triangle. Repeat the process with the remaining triangles 
over and over again.

The Sierpinski Triangle
If you start with a Pascal’s triangle and color the odd 
numbers black and leave the even numbers white, it will 
closely resemble the Sierpinski triangle, which is named after 
the Polish mathematician Waclaw Sierpinski (1882-1969). 
Sierpinski’s work included three well known fractals, including 
the triangle, carpet, and curve fractals.

1
11

1331
11 2

1441 6
110101 55

16156 151 20

Odd

Even
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With the help of Philip Poissant, Jerry Xu, Art Forster, Jackson 
Lin, Mike Auchterlonie, the Brunson family, and others, I 
created my first seven-and-a-half-inch-
tall desktop-sized Galton board, called 
The Random Walker®, in 2015. This 
compact version of the Galton Board is 
not only a helpful educational tool for 
understanding statistical concepts and 
stock market randomness, but also a 
delightful desktop device to play with.  
With an innovative flip-n-reset design, 
one can easily experience the order 
in chaos with just a tip of their finger.  
About 60,000 of these boards sit on 
desks all over the world.  

In 2022, I created this twelve-inch-tall version, that you find 
in this box. This much larger version is a lot easier to read, to 
demonstrate to groups of people, and to use in a classroom setting.

My name is Mark T. Hebner, and I 
am the CEO and founder of Index Fund 
Advisors, Inc. (IFA.com). My firm is in the 
wealth management and tax preparation 
business.  I am also the creator of this 
Galton board. 		

The most common way to describe 
the risk and return of an investment is to 
estimate its average return and standard 
deviation of return from a large sample of historical returns, 
something like 900 months (75 years) of index data. If you want 
Excel to draw a bell curve, you only need the average and the 
standard deviation. They define the bell curve. As it turns out, 
Harry Markowitz’s Nobel Prized winning scatter plot of average 
return versus standard deviation was just a comparison of 
bell curves. So imagine my excitement when I found a physical 
device that generates a bell curve. I realized it is a powerful 
demonstration of how markets work and the probability of a 
range of different outcomes. It also occurred to me that the 
Galton board simulates monthly investment returns and allows 
people to see the constant expected returns, the randomness of 
returns over a period of thirty days, and the resulting bell curve of 
the realized returns over very long periods. Put simply, this device 
helps investors understand critical investing ideas.

My fascination with the Galton board was ignited back in 
2005 when I saw an Eames Office film about the 1964 World’s 
Fair. Charles Eames built an outdoor fourteen-and-a-half-foot-
tall Galton board for the IBM exhibit, modeled after a previous 
design he had built for Mathematica: A World of Numbers... and 
Beyond. Mathematica was the first fully immersive and large-scale 
exhibition produced by the Eames Office and sponsored by IBM. 
It was designed for the 1961 opening of a new science wing at the 
California Museum of Science and Industry in Los Angeles. 

My first Galton board, shown on the right, was designed 
and built by the Oregon Museum of Science and Industry. The 
photograph depicts an eight-foot-tall by four-foot-wide museum-
quality probability demonstrator that I commissioned in 2009 
to educate investors about the range, probability, and shape of 
outcomes that result from a series of random events. This Galton 
board sits in the lobby of Index Fund Advisors’ office and helps to 
portray order in the midst of chaos that is the random walk of Wall 
Street. The red bars behind the beads represent a large sample of 
monthly returns of a theoretical investment portfolio and allow the 
comparison of the beads to the stock market. In the stock market, 
random events are the news stories about a company or about 
capitalism in general and the prices of securities that reflect this 
information. The random flow of the beads, starting from a central 
point, simulates a series of fair prices, ultimately forming a normal 
distribution of monthly returns in the shape of a bell curve. 

Mark T. Hebner

My Fascination with the Galton Board 
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This version of the desk-top sized board incorporates 
many new improvements in design from the previous 
iteration.  It more precisely captures the concepts of the 
binomial distribution and Pascal’s triangle, along with the 
many embedded mathematical concepts. By adding the Clip-
ons of monthly return data, one can see the incorporation of 
elements of the stock market, including the Hebner model, 
and how well they match to the bell curve of the beads.

To further promote the understanding of the principles 
embedded in the Galton Board and Pascal’s triangle, I 
commissioned and created an app version of the Galton 
Board in 2023. This app version uses the gyrometer that 
allows you to turn the phone or iPad and hear and see the 
beads flow as if they were physical beads rolling around in 
your device. By tapping the settings icon, you can also overlay 
twenty index portfolio histograms and see the change in the 
returns scale of the bins as the risk changes. To get the app 
for iPhone and iPad, visit the Apple App Store, and search 
“Galton Board App” or  “Index Fund Advisors”.  You may also 
visit the Mac App Store on your Mac laptop or desktop and 
search Galton Board app. Finally, visit the Google Play Store 
for android devices and search “Index Fund Advisors” and 
soon there will be a stand-alone “Galton Board App”. 

Get the App! 

About Index Fund Advisors

Index Fund Advisors, Inc. (IFA) is a fee-only advisory 

and wealth management firm that provides risk-

appropriate, returns-optimized, globally-diversified and 

tax-minimized investment strategies with a fiduciary 

standard of care.

IFA is a registered investment adviser that provides 

investment advice to individuals, retirement plans, 

trusts, corporations, non-profits,  and public and private 

institutions. IFA was founded in 1999, and celebrated its 

25th anniversary in 2024. IFA provides investment advice 

to clients across United States. 

The value of IFA extends beyond investment 

advice. As a holistic financial partner, IFA helps guide 

investors through all life stages. Our Wealth Advisors 

take a personalized approach to matching people 

with portfolios while offering a full-range of wealth 

management  services and financial planning for a better 

overall client experience.

IFA seeks to avoid the futile, speculative, and 

unnecessary cost-generating activities of stock, time, 

manager, and style picking. Contrarily, IFA employs a 

disciplined, quantitative and low cost approach that 

emphasizes broad diversification and consistent exposure 

to the dimensions of returns of global securities.

IFA primarily bases its investment strategy on the 

highly respected research indexes designed by Eugene 

Fama and Kenneth French, incorporating 96 years of IFA 

Index Portfolio risk and return data, third generation 

index fund designs and 40 years of refined passive trading 

techniques, employed by Dimensional Fund Advisors.

ifa.com
Mark T. Hebner
Founder and CEO
info@ifa.com
19200 Von Karman Ave. Suite 150 
Irvine, CA 92612 | 888-643-3133

®

To learn more, visit ifa.com
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Visit GaltonBoard.com for videos, articles, photos and more information.

©2024 Index Fund Advisors, Inc  •  ifa.com  •  galtonboard.com
19200 Von Karman Ave  Suite 150  Irvine, CA 92612  USA
888-643-3133  •  #IFA-R32.1-GB-9-2024  •  Made in China  
All Rights Reserved  US Patent No. D784,449  •  Created by Mark T. Hebner

“The Galton Board is a chilling reminder that out 
of wonderful, wild randomness, order and stability 
can emerge.”
- Michael Stevens 
Creator and host of  YouTube channel Vsauce

“This device is nothing short of wondrous - demonstrating 
elegantly an astonishing aspect of our universe. It is just 
beautiful in form and function, and the graphics along with 
the booklet is educational in a way that is missed in our 
college stat courses.
If I taught statistics I would require the purchase of this 
Galton Board!”

- Dr. Raymond Hall 
Professor of Physics, California State University - Fresno

@physicsfun on Instagram and YouTube

galtonboard.com

PACKAGE 
DIMENSIONS

14.41 x 9.13 x 4.80 inches (366 x 232 x 122 mm)
79.35 oz (2250 g)

UNIT
DIMENSIONS

12.20 x 8.58 x 3.94 inches (310 x 218 x 100 mm)
36.69 oz (1040 g)

INCLUDES One Galton Board Device
product and color may vary

One User Guide
Two Stock Market Clip-ons X2X1 X1

A special thanks to Sir Francis Galton, Blaise Pascal, Mark Hebner, Philip 
Poissant, Jerry Xu, Jackson Lin, Art Forster, Mike Auchterlonie, the Brunson 
family, Cat Phelps, Wes Long, Jesse Fulton, Robert Bray, James Duncan, 
Charles Eames, OMSI, Harry Markowitz, Beth Hebner, Tisley & Spiller and 
the many other people who contributed to the nearly 20-year long process 
that led to the design, manufacturing, development, review, QA, QC, IP 
protection and distribution of this Galton Board: Probability Demonstrator.


